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BAYESI.N AND NON-BAYESIAN EVIDENTIAL :fEASURES*

1. Recent work in both vision systems (Garvey, Wesley) and

in knowledge representation (Lowrance, Barnett, Quinlan, Dillard)

has employed an alternative, often referred to as Dempster/Shafer

updating, to classical Bayesian updating of uncertain knowledge.

Various other investigators have gone beyond classical Bayesian

conditionalization (MYCIN, EMYCIN, DENDRAL, ...) but in a less

systematic manner. It is appropriate to examine tne formal relations

between various Bayesian and non-Bayesian approaches to what has

come to be called evidence theory, in order to explore the question

of whether the new techniques are really more powerful than the old,

and the question of whether, if they are, this increment of power

is bought at too high a price.

2. Classical probability theory supposes (1) that we commence

with known statistial distributions, (2) that these distributions

are such as to give rise to real-valued probabilities, and (3) that

these probabilities can be modified by using Bayes' theorem to

conditionalize on evidence that is taken to be certain. There are

thus three ways to modify the classical theory.

We may dispense with the supposition that we are dealing with

known statistical distributions. The best known advocate of this

gambit was L. J. Savage, who argued that probabilities represent

personal, subjective, opinions, and not objective distributions

of quantities in the world. This approach has given rise to Bayesian



statistics, based on the fact that the opinions of most people are

such that, faced with frequency data, they will converge reasonably

rapidly. Furthermore, in practice, it is common to recognize that

some opinions are better than others, and to use as prior distri-

butions in statistical inference distributions representing the

opinions of knowledgeable experts. This approach has been incor-

porated in some expert systems, for example, PROSPECTOR. It has

both virtues and limitations. A purely pragmatic virtue is that it

allows us to get on with our business even when we don't have the

knowledge of prior distributions we would like to have. It has the

practical virtue that the considered opinions of genuinely knowledge-

able experts are formed in response to. and reflect with some degree

of accuracy, relative frequencies in nature. But it has two draw-

backs: it does not incorporate any indication of whether the opinion

is a wild guess, or a considered judgement based on long experience;

and it calls for expert opinions even in the face of total, acknowledged

ignorance.

This suggests the second departure from the classical picture;

abandoning the assumption that our probabilities are point-valued.

This has recently been hailed as a novel departure (Lowrance, 1982,

p. 21; Garvey, et. al., 1981, p. 319; Dillard, 1982, p. 1; Low-rance

and Garvey, 1982, p.7 ; Wesley and Hanson, 1982, p. 16; Quinlan, o82,

p. 9). The idea of representing probabilities by intervals is not

new (cf. Kyburg, Good, Levi, Saith), and the notion of probabilities

that constitute a field richer than that of the real nners goes

back even further (Keynes, 192i, offers a formal p'riosophicil



treatment of such entities; B.O. Koopman, 1941, 1942, offers a

mathematical characterization). Even the standard subjectivistic

or personalist view of probability can be construed in this way;

while each person has a set of real valued probabilities defined

over a given field, a group of people will reflect a set of proba-

bility functions defined over the field. We may quite resonably

focus our attention on the supremum and infimum of these functions
1

evaluated at a member of the field.

In general the representation in terms of intervals seems superior

to the representation in terms of point values. Even in the ideal case,

in which all of our measures are based on statistical inference from

suitably massive quantities of data, it is most natural to construe

these measures as being constrained by intervals. In confidence

interval estimation, for example, what we get from our statistics

is a high confidence that a given parameter is contained in a certain

interval. This translates neatly and conveniently into an interval

constraint. The results of statistical inference should reflect

interterminacy or vagueness. What we can properly claim to know is

not that a parameter has a certain value, but that it lies within

certain limits. This limitation of human knowledge should surely

be mirrored in computer based systems.

The third departure from the classical scheme is to consider

alternatives to Bayes' theorem as a way of updating probabilities in~r

the light of new evidence. This departure is recent, and was first

stated in Dempster, 1967. 2emnster's novel rule of combination,

Av~,iIamii1 . Codes
Avail and/or( 1 Dlat Special



subsequently adopted by Shafer (1976), is often referred to as a

"generalization" of Bayesian inference (Lowrance and Carvey, 1982,

p. 9: "Dempster's rule can be viewed as a direct generalization

of Bayes' rule ..."; Dillard, 1982, p.1; Garvey, et. al., p. 319;

Lowrance 1982, p. 21). This suggests, on the one hand, that Bayes'

rule can be regarded as a special or limiting case of Dempster's rule,

which is true, and on the other hand that Dempster's rule can be applied

where Bayes' rule cannot, which is false. Dempster himself

recognizes (1967, 1968) that his rule results from the imposition

of additional constraints on the Bayesian analysis (see note 4).

One very serious problem with the usual Bayesian approach to

evidential updating is the quantity of information that must be

embodied in the probability function covering the field of proposi-

tions with which we are concerned. This may be empirical information

(if the underlying probabilities are thought of as being based on

statistical knowledge), psychological information (if a personalistic

interpretation of probability is adopted), or logical information

(if we interpret probability as degree of confirmation, a la Carnap

(1951)). Suppose we consider a field of propositions based on the

logically independent propositions p, ... ) the set of what Carnap

called "state descriptions" induced by this basis consists of 2

atoms, each of which is the conjunction of the n (negated or unnegated)

p.. It is obvious that for reasonably large n this assignment of

probabilities :resents great difficuities. 3ut once we have those 2-

nu7.bers, we're i-ne - se can cal:-.a E all acndi:'.21 robiliies as

well as the :rcSabilitv of any proosl-iin in t :fed basel on u,. *.P



Is there a saving in effort if we go to a Dempster/Shafer

System? Using the handy representation in Shafer (1976), we take

-3, the universal set, to be the set of all 2n possibilities repre-

sented by the state descriptions, and assign a mass to each subset

of 5. This requires 2 exp 2n assignments' As far as the number

of parameters to be taken account of is concerned, we are exponen-

tially worse off. But if we construe probabilities as intervals, or

represent them by convex sets of simple probability functions, we

are just as badly off. (For an example relating mass assignments

to interval assignments, see table I in the appendix. For the general

equivalence, see theorem I below.) Dillard (p. 4) refers to

"computational limitations" and Lowrance and Carvey (1982) mention

that with large e, maintaining the model is "computationally

infeasible."

In either case, we need to find some systematic and computa-

tionally feasible procedure for obtaining the masses or proba-

bilities we need. Bayesian and non-Bayesian approaches are in

essentially the same difficult situation in this respect, although

there are often plausible ways of systematizing the parameter assignments

on either view.

3. Whether the representation of our initial knowledge state is given

by an assignment of masses to subsets of or a set of classical

probabil ity distriuti:ns over t-e atoms , s t7ortant that

t.ese masses or prcba ilities by usti e As already sested,

the most straiht-f rz- ar wav of i t-- s t hDro-oh. statit caL



inference, which (when possible) yields interval valued estimates

of relative frequencies. But there may also be other ways to obtain

masses or intervals of probability. If so, then the deep and difficult

problem arises of how to combine both statistical and non-statistical

2
sources of information.

It has been suggested that Dempster/Shafer updating relieves

us of the necessity of making assumptions about the joint probabilities

of the objects we are concerned about. Thus, Quinlan claims that

INFERNO "makes no assumptions whatever about the joint probability

distributions of pieces of knowledge ...'" (Quinlan 1982). Other

writers have made similar claims -- e.g., W esley and Hanson, 1982, p. 15.

(To make independence assumptions is exactly to make assumptions about

joint probability distributions.)

It is clear that the assignment of masses to subsets of 9 involves

just as much in the way of "assumptions" as the assignment of a priori

probabilities to the corresponding propositions. In view of the

reducibility of the Dempster/Shafer formalism to the for-nalism provided

by convex sets of classical probability functions (to be shown below),

moreover, we may recapture the assumptions about joint probability

distributions from the convex Bayesian representation.

4. One important novelty of the Dempster,!Schafer system is

its ability to handle uncertain evidence. But even this 's not in

itsL anti-?a,;esian -.here are als) Ba-estin -

uncertain evidence. One of these, usei in a7'S?- C . an ,

by Lomrance -l . p. -) is 'Knc-n in e >ilosohi ''",rli as

Jef:frev's r I. is pre~entci" an sr- " r .

o DLDws from 5a.es' hecre- . that



P(A) = P(A/B)P(B) + P(A/-B)P(-B).

If you adopt a new (coherent) probability function P', there are

essentially no constraints on P'(A). But one can adopt the prin-

ciple that if a shift in probability originates in the assignment

of a new probability to B, that should not affect the conditional

probability of A given B: P(A/B) = P'(A/B). We have learned some-

thing new about B, but we haven't learned anything new about the

bearing of the truth of B on the truth of A.

Given this principle, the response of a shift in the probability

of B from P(B) to P'(B), resulting from new evidence, should pro-

pagate itself according to:

7'(A) = P(A/B)P'(B) + P(A/-B)P'(-B)

When new evidence leads us to shift our credence in B from P(B)

to P'(B), a corresponding shift in probability is induced for every

other proposition in the field: the new probability of a proposition

A is the weighted average of the probability of A, given B, and the

probability of A given not-B, weighted by the new probabilities of

B and aot-B.

Lowrance (1932) worries about the problem of iterating this

move. Having made it, shoull .e then update th- probability of B

in t:. light of the new rc'ahiL ty '"'-k ''lt-v an, Ha-son (1932,

p. 13) worry about a potential ioat ion. of Uaes ' 1aw.. But what

is offer e, -s not a relaxation net _3 t I' S :n .etod o .evaluain g



the impact of evidence which warrants a shift in the support for B.

It makes no sense to consider updating P'(B) in the light of the

new value of P(A); P'(B) is the source of the updating. No contra-

diction lurks here.

Other Bayesian updating procedures are possible (cf. Hartry

Field, 1978), but it is hard to think of one so simple and so natural.

This is particularly true in the epistemological framework considered

by Shafer; the weights of the subsets of - assigned masses reflect

our a priori intuitions; there is no way in which the values of these

masses, given our observations, can be changed without changing the

model entirely. What impact given evidence has should not also

change according to the evidence we happen to have.

5. In order to investigate more closely the relations between

the Bayesian and Dempster/Shafer stragegies for updating, it will

be helpful to have several formal results. In the present section

we establish the partial equivalence between the assignment of masses

to subsets of e (the space of possibilities) and the assignment of

a convex set of simple classical probability functions defined over

the atoms of 9. The equivalence is only partial, since some plausible

situations do not have a representation in terms of mass functions.
3

(_Throughout "c" is to be understood as proper or improper inclusion.)

Theore. 1:

Let :be a prob3aility -sszc:.n -efined over a fra7e of

nMSMMM--,,,,



discernment e. Let Bel(X) be the corresponding belief function --

Bel(X) = Z m(A). Then there is a closed, convex set of classical
ACX - -

probability functions S. defined over the atoms of e such that for

every subset X of 9, Bel(X) = inf P(X)
-P 'p

Proof: Let S be the set of classical probability functions P defined-P

on the atoms of e such that for every X C 5, Bel(X) - P(X) < I-Bel(X).

S is closed, since P(X) = Bel(X), F(X) = 1-Bel(X) is a classical

probability function. S is convex, since for 0 < a < 1, aP (X) + (1-a).2 (X)

lies between Bel(X) and l-Bel(X) whenever PM(X) and P2 (X) do. Since

there is a PESp such that P(X) Bel(X), Bel(X) > inf P(X). And inf P(X)

> Bel(X) since this inequality holds for every PSp

-p mmmi n



Theorem 2

If S is a closed convex set of classical probability functions-P

defined over the atoms of e, and for every A, B C 3, inf P(AUB)

> inf P(A) + inf ?(B) - inf P(Ar?), then there is a mass function m

defined over the subsets of S such that for every X in 9, the

corresponding Bel function satisfies

Bel (X) = nf P(X)

proof: Since S is closed and convex, for every X&e there is
Inf

a ?,S such that P) = Inf P(X). For every Xice, define P,(X) to be (X)-
_ _ _ _ PES - -__ P (Xs

By Shafer's Theorem 2.1, if i is a frame of discernment then a

function Bel 2 N,1. is a belief function if and only if

U) Bel (N) = 0 ?*(0) = 0

(2) SeL P! I *(O) = 1

(3) For every positive integer g and every collection A,,...,A n

of subsets of i,

Bel (Ai. * n) > _ (-1)- el( ) A.)

Since Shafer's theorem 2.2 gives an algorithm to recapture the mass

fun::tcn from the belief function, we need merely extablish (3)

fNr 7:: fnntian PO:

! 3



(3' P (A . ) > !(-) P,.( 0DA:

- nl,...,n. - -

Suppose (3') fails. Then there is a collection AI ... A of

smallest cardinality n, for which (3') is false. I.e.,

P,(AIu ... u ) < -P ( A.)

But P*(Alu... LA ) ,n) +P,( -u -._A ) -*,(A "" ... L)A),
-R - - - -1--"n-i -*(A 1j n-1M -n

by the hypothesis of the theorem.

u, (A -... _l ) = *( (_A 1 ) u(_z A n) U-... U(A 1 nAn))

By hypothesis, (3') holds for collections of cardinality of (n-1).

(4) Thus P,((AlA )-(A- A n) (An-lnA)) > (i) "' , -1 A - A )

(5) and _P,(A 1 . . .  -i (-I) n A)
- IcA ,..., ,n-L: -

Compute L (-1) P A.):

LC{1, ... ,flf

We evaluate the sum by cases: I = 1, il > I and n i I, and ill > I

and n E I.

T! = 1 : _?(An)- (-) - p (f Ai)
-- _ --l,..nl- s

!I =1 +1

(-1) °..( ,% A.) =-- P ) + P (A.)

-- -- <

:~ =L



i! > I I~l n- I': n- ) + f (  i

-* i{II,- --

,Lc ( 1,.. ,n I

f2El, III>'

Combining the three terms, we have,

- lc{l,...,n} - -i - rc{l, . n}---

+* (I,0 (-I) f+1 ( in A.)

Ic1, -* i -

iE ilE>

nnin I

These two theorems show that the representation of uncertain knowledge

provided by Shafer's probability mass functions is exactly equivalent

to a representation provided by a convex set of classical probability

functions, and that the representation of uncertain knovleuge by a convex

set of classical probability functions is exactly equivalent to a

representati.on provi!d by a -rnabili; -.ass zunt io- s. Ion- as the

convex set of orrcbab iiv ftunct iins satisfies trnE gEnera7 relation.

? (AUB) > * (A) + ?,B) P-k n-3



6. The main theorem of this section gives the relation

between convex Bayesian updating and Dempster/Shafer updating.

To establish the theorem requires two reductions. These are

given by two lemmas. The first provides an algorithm for computing

the result of Dempster/Shafer updating in response to uncertain

evidence; the second does the same thing for Bayesian updating.

Lemma 1: Let 6 be a frame of discernment. Let our initial belief

function by Bell. We obtain new evidence whose impact on the frame

of discernment 6 can be represented by a simple support function

(Shafer 1976, p. 7) Bel whose single focus is CE2 . B attributes

mass s to C and mass (1-s) to e.

Let the foci of Bel - the subsets A of a receiving mass ml(A)>O

be A1  A2 ,..., A . We can construct a new frame of discernment 9' and

a new belief function Bell, such that

(a) For every XcSl, Bel1
1(X) = Bel (x0

(b) For every Xc, (Beli@Bc)(X) =Bel'(XIE) where EE2 and_ ,_,_n

the evidence partially supporting C provides total support for

E. "*" represents the application of Dempster's rule of com-

bination to Bel and BeC; Bel(XE) represents Dempster's

rule of conditioning on E - the analog of Bayesian condition-

alization (Shafer 1976 p. 67).



Proof: Let e be new to E, anc for every 2- generate two new possibi-

lities" pe and e. Let e' - ap': E(P'=e v p_=p.e I. Let E- {p': 3p E(p'=pe)}.

Since the evidence that supports C is to render E certain, we have C'cE

i.e. C' = (!: 3C(a:= )}.

We define Bel ' on the basis of ml as follows:
z-. -4

Be 11' has n foci of the form A. each with mass (1-s)mI(Ai), where

m is the mass function associated with Bel.

For every i such that A.?C' = 0, A.r E is to be a focus with mass

_sm(A,). For convenience we take the first p of the A. to be those for

which A.rC' = 0. Note that p may be 0, but cannot be n, else Bel1

Bel C would be undefined.

The remaining i give rise to the remaining foci. these are of the

form (ACi '-C Q i rE), and receive the remaining mass. Since (AirC'),

(A. E)=(A.-C') , (A2:E) is a possibility for i~j, we write

rnl t((AirC').(A~r-E)) = Z -mi(A_)'s{I: (A,-C (A. )u (A(A.=(.:C ~(Ar

L-- -- I --I

Note that Z I(A. -C'x.~ D =2 1 m(A.)-s, since

these sets have positive mass only if A C'40.

i4



We first show that Bell is a belief function. Obviously its mass

function m' is non-negative for every A~c', so we need only show that

Z m'(A) = 1. Summing over the three kinds of foci, we have:
A e

n p n

(-m(A + s (A + Z 'SI(A)

Ai=l - i-=+

We next show that Bel 1 is equivalent to Bel i.e. that for any
I

xca, Bel I (X) = Be_l(X).

Bel 1 '(X) M' m'( + Z m'(APE)+ m'((A.,C)u(A'E))

AcX A.X -

-- A.rEcX (A. C) u(.E) X

The first term yields /. (1-s)m (A -- (1-s) ._ (A )
A.cX A.cX

Since X (XE)u(XE), A .E : KE if and only if A. X, in view of the

fact that pe : A.r E if and only if pEA. and the same holds for X. Thus

the second term yields sml(A.)

X.

U . p

15



To evaluate the third term, we claim that (Ai nC)u(Ai -!_) c X if and only

if A iX. If A. X, then A. C c X and A.f E c X and so (A-C).(AE.)c X.

Suppose (AinCj)(A.nE) c X. Then A.rE cX, A E z XE, and by the prece-

ding argument AicX. Thus the third term yields s-m(A i )
AiX -

i np<i'n

Putting the three parts together, we have Bel () Bel

We now show that conditioning on E in the frame of discern=ent e

is equivalent to combining uncertain evidence C with Bel1 in the frame

of discernment 9 according to Dempster's rule of combination:

For every Xz5 , (Bel eelcX , Bell' (XE)

S(A.)-s (A+(-
A ,-.eo, A C:X A.:X

(-) (BeIBeZc)(X)

1 A.C=s.Ai nC=O

(The numerator comprises two sums, since Bel C has two foci: C and e

with masses s and (l-s) respectively.)

'(A) - _,

A2V BL A:--)
(2) Bel. '(X E)

-- ..- . _ _

- - ,(.



p

_ Q1 '(A) S .m(A.), since only the foci of the form A rE

Ac! 1=1 -

are included in E: A. = irE)(AinD) is not included in E, and

since C'cE, (A tC')u(A iE) is included in E only if A.'-C'=O, in

which case it has no mass.

p

m i(A )*s (A
A nCl=O

Hence the denominators of (1) and (2) are the same.

It remains to evaluate F- ml'(A)" Consider foci of the form

A A.cXuE if and only if A i:_, so these foci yield mass

m'(A ( i

A.c - A. X

corresponding to the right hand term in the numerator of (1).

Consider foci of the form A , E. All of these are included in

XuE; they yield

p pZ r'(A.) = L. s',A) = 'A
i=i -- i1l -- AE

so they drop out of the nu-.erater of (2).

17



Finally, consider foci of the form (ArC_')u(AiE. ). We first show

that (A inC')u(Ainf) c X-E if and only if A nC' c X. Suppose

(A nC')u (A rnE) C . Then A -C' z(D. But C'=E, so A!'C'=
--i - -i- - ()

A nC' E XijE only if A .C' z X. Suppose A inC' C X. Then since

Ai r',E c E cXuE, (Aj,-C')..(A -E) K, XE

We compute the mass in the numerator of (2) due to foci of

this sort. They have mass only when A nC'#O. And then they have

mass

Z (A)

{j: (A.r C')(A(A ) A = C' (.E)
Ti -i- _E)

each A such that A -C' c X contributes s-m (A ) Their total mass-i_ i .. . .. .

is therefore

Z E 1 (Ai),
A.nC' c X~1-

A ;C'#O

corresponding to the first term of the numerator of (1).

We have therefore sown that (Bel 4Bel )()=.l , .

3



Two remarks on this construction are in order. First, we have

given no rule for finding the "possibility" E. But in general that

should be no problem. Suppose C is the proposition that there is a

squirrel on the roof of the barn. The light is bad, so Bel assigns a

mass of only .8 to C, and assigns the remaining mass to 6. We take E

in ' to be the proposition that it seems (.8) to be the case that there

is a squirrel on the roof, for which the evidence is conclusive. The

index 0.8 indicates the force of the seeming, and is reflected in our

assignment of masses in 9 '. In many situations it seems quite natural

to replace "uncertain evidence" by the "certain" data on which it is

based.

Second, however, whether or not we can always do this is unimpor-

tant for the comparison of Bayesian and Dempster conditioning. We can

regard the introduction of E to be merely a computational device that

helps us to compare the distribution of masses in 4 according to the

function Bel 4Bel C to the corresponding set Bayesian conditional dis-

tributions.

We now present an analogous Lemma for Bayesian conditionali-

zation based on Jeffrey's rule for uncertain evidence.

Lema 2.

Suppose that 0 is our original assignment of probabilities to the

field F of propositions whose basis is -a 1L-° ... --a' n . As a result of

stimulation of our sense organs, or unreliable observation, we shift our



probability assigned to A from p0 A to P (A). By Jeffrey's Rule, for

EF.

Let us add a new atomic proposition e to the basis of F to obtain

the field F', and represent it by E. we impose the constraint P' (Alf)

=P(A); P' (E) may have any value that strikes our fancy.

We extend P- sota frayXSP' )= EM P' is fully
so tha fo0n Q n -'-

equivalent to P 0, so far as F is concerned, before we obtain information

about A. Specifically, set

k =~ P (k) I-P 1~ -k P (A)

For XFEF', set

P' F' () kP (VA) + k' P (XI%)I

(V P P- ( X~

Clearly, for XcF,

(~~~) = (XP Q.~(X

We now show that for XrF, Drobabilities conditional on E are equal

to the probabilities given by Jeffrey's rule: P LX) P' (.K,

P ( X -,)
For i, ( )

P' (E) -[k P (XVA) + k' P (V-A)]

P.('A)

- ~ (A D(A)

P (A) () kA



The same remarks may be made with regard to this construction

as were made with regard to the previous one. Although we haven't

given a rule for specifying E, it shouldn't be too hard in most circum-

stances to come up with a plausible E; and in any event we can construe

the construction as a computational device to make it easier to compare

Dempster conditioning and Bayesian conditionalization.

The following theorem shows that in the case of certain evidence,

Dempster/Shafer updating yields narrower probability intervals than

does Bayesian updating. The next theorem employes Lemmas 2 and 3

to show that this relation holds in general, and not only when our

evidence is certain.

Theorem 3:

Let 9 be a frame of discernment, Bel a belief function, and S the

corresponding set of Ba 'esiian probability functions. Let B be

evidence assigned probability 1, or support 1. Then for Aze

inf P(AB) _ Bel(A';B < P*(A) i 5 P(AB)
?ES P P S

where P*(A'B) = I - Bel(A1B) is Shafer's plausibility functica.

Proof: (.All infima and suorema are taken nver Pq )

inf (A.B)
inf P(A!B) =

inf(A-B) + sup(A-B)

sup(A-B)
sup P(A B) =

sup(A-B) + inf(A-B)

Be (AB) - BeL(B)

Be1-(eA. B)

P*(A-B) 1-BeLVA B)

p*(A 3) -
P*(B-Be l()



By computations from table I of the appendix, we obtain:

in P(AB)
(X +X )+(I + -+X4 )+ (] X ' +X +Xx )+X

( 3 + 13 23 -34 ) -123 -134 2 34+ _2-X4+ 24

x+xl +x +X +X )+

-1+(2 + X13 + ,K4 )+ (X 123 +-124 + X 134 )+ X a
P*(AIB)

(X+X 3 )+(X +X +X )+(x +23 + [)+Xs+[x +X X
-1-3 -12 -13 . 14 ~-123 -124 -134- -23 _-34 +-234

From which the inequalities easily follow.

Corollarv:

(1) inf P(AI_) = Bel(AIB) iff XI2+X=4+.2 0

(2) Bel(AIB) = P*(A!B) iff X+xi23X +X = 0
-13t -123 '-134X=

(3) sup B(A() iff X++X23+X34+K234

Theorem 4: If we apply Dempster's rule of combination to any evidence

represented by a separable support function (our initial state need not

be so represented) we obtain constraints more severe than those we get

from Bayesian conditionalization applied to the same initial state.?

Proof: A seperable support function may be represented as the combina-

tion of simple support functions. By Le-mna i, the effect of a simple

support function can be represented by Dempster conditioning. By

Theorem 2, the initial state can be represented by a closed convex set

of Bayesian probability functions. By Lem-a ? the effect of uncertain

evidence (as reflected by a simple supoort function) can be represented

by Bayesian conditionali~ation. By Theorem 3 the belief intervals re-



suiting from Bayesian conditionalization will include the belief inter-

vals obtained from Dempster conditioning. Therefore the result of

applying Dempster's rule of conditioning will lead to belief intervals

more severely constrained than the convex Bayesian intervals corresponding

to them.

8. Dempster/Shafer evidential updating, we have seen, leads to

more tightly constrained representations of rational belief than

6
does convex Bayesian updating. It night be thought that this is

a virtue. But whether or not this is a Good Thing is open to question.

Suppose that D = D ... ID are alternative decisions open to

you, and that you have a utility function defined over the cross

product of D and the set 9 of possible states. You begin with a belief

function, and you obtain some evidence. If you ccmbine this evidence

with your initial belief function according to convex Bayesian

conditionalization, your new beliefs will Le characterized by a set

of probability functions P. If you perform the combination of evidence

according to non-Bayesian procedures, your new beliefs will be character-

ized by a set of probability functions P that is (in general) a proper

subset of PB.

Given any probability function P in either P B of N' you can

calculate the expected value of each decision: E(DiP). Let _s

say that D. is admissible relative to a set of probability functions

just in case there is some probabiLity function in the set according

to which the expected value of > is at least as zreat as the expectec
-1



8
value of any other decision. Since P is included in P the admissible

decisions we obtain if we update in a non-Bayesian way are included

among those we obtain if we update in a Bayesian way.

There are three cases to consider. (1) We obtain the same set

of admissible decisions by either updating procedure. In this case

we have gained nothing. (2) If p leads to a set of admissible
-N

decisions containing more than one member, then so does P and we

must in either case invoke additional constraints in order to generate

a unique decision. (3) If P leads to a unique admissible decision

and P does not, we appear to have accomplished something useful-B

by means of non-Bayesian updating.

But it is open to question whether the added power should be

built into the evidential updating rule, or whether it should appear

as part of a decision procedure that takes us beyond the evidence.

Many people feel that principles of evidence and principles of decision

.cuid be kept distinct.

Consider an urn filled with black and white iron balls, some of which

are magnetized and some of which are not. It is easy to imagine that

by extensive sampling, or by word of the manufacturer, our statistical

knowledge about the contents of the urn may be as represented in table II

of the appendix, where the set of black balls is represented by A, and

the set of magnetized balls is represented by B. Given that this

is oir initial state, we may as,- what- our attitude should be toward

t prposit ion that a ball selected from the urn is magnetic, given

r..l it is white.

emster conditioning yields the degenerate interval 70.8, C.S

Baesian cjnditionalizatiin *iel/s the interval .0.5, 0.8



Suppose you are offered a ticket for $ .75 that returns a dollar

if the ball is magnetic. On the view identified with Dempster and

Shafer, it is not only permissible, but, given the usaal utility

function, mandatory to buy it. On the convex Bayesian view either

accepting or rejecting the offer would be admissible. It is true

that, for all you know, the true expectation is positive; but it is

also true, for all you know, the true expectation is negative. If

every thing you know is true, the expected loss may still be $-.25.

On the other hand, there are cases where Dempster's rule of

combination leads to intuitively appealing results, but the convex

9
Bayes approach does not. Suppose you know that 70% of the soft

berries in a certain area are good to eat, and that 60% of the red

berries are good to eat. what are the chances that a soft red berry

is good to eat? The rule yields .42/.54 = .78, which has intuitive

appeal. But the set of distributions compatible with the conditions

of the problem leaves the probability of a soft red berry being good

to eat completely urideter-mined: it is the entire interval 'O,l ! It

is possible that 100% of the soft red berries are good, and it is

possible that 0% of the soft red berries are good.

It is clear that in applying the rule of combination, we are

implicitly constraining the set of (joint) distributions we regard

as possible. This is suggested by Shafer's requirement that the items

of evidence to be combined be "distinct" or "independent". The most

natural sufficient condition tha: leads to the same resul: as Dempster's

rule of combination is that all the pr~bability functions in our :onvex

set satisfy the three conditicns

15



(i) P(G) :

(ii) P(S/G&R) = P(S/G)

(iii) P(S/G&R) = P(S/-G).

Condition (i), of course, is our old friend, the principle of

indifference. Conditions (ii) and (iii) might be called inverse

conditional independence, and it is not hard to imagine that we

have warrent for supposing they are satisfied.

The exact necessary and sufficient conditions for agreement between

the two methods are that our set of probability functions satisfy one

of the two conditions

(iv) P(G&R&S)/P(G&R&S) = P(G&R)*P(G&S)/P(G&R)*P(G&S)

or (v) P(S/G&R)/P(S/C) = P(G)/P(C) * P(S/G*R)/P(S/C)

If our evidence is statistical in character, it clearly behooves

us to unpack the statistical assumptions underlying our employment

of non-Bayesian updating procedures. But what if our evidence is

not statistical in character?

One plausible response is that Dempster's rule of combination

is not designed for all cases in which you have statistical data to

serve as input. Sometimes the masses in the belief function are

determined by frequencies, and sometimes they are not; only when they

are not determined by frequencies shoul: we apply non-Bayesian updating.

It is difficult to make a Cse aa Lns t -s res nse except b _-aking

a case for the claim that al reslonsile an-1 use2fut probabilities,

even very vague one, are bsed or, statistical kncwieJga. But then

26



we must also face the problem of how to treat evidence which is mixed

-- which contains both statistical components and intuitive components.

While it is a theorem that Dempster combination is both commutative

and associative, and also a theorem that Bayesian combination is both

commutative and associative, it is obviously not the case that a

mixture of Dempster and Bayesian methods need be commutative and

associative.

It should be strongly emphasized that the present arguments are

not intended as arguments in favor of the general applicability of convex

Bayesian conditionalization. Rather, what I have shown is (1) that

the representation of belief states by distributions of masses over

subsets of a set e of possibilities is a special case of the convex

Bayesian representation in terms of simple classical probabilities

over the atoms of 9, (2) that the treatments of uncertain evidence

in both Bayesian and non-Bayesian updating are reducible to the corres-

ponding treatments of certain evidence, and (3) that non-Bayesian

updating yields more determinate belief states as outcomes, but that

the benefits afforded by non-Bayesian updating are limited and questionable.

27



Table I

Atomic propositions A,B

Mass Lower Measure Upper Measure

AB x 1 x 1 1~~~-x 2-x 3-x 4-x 2- x24 34x24

2 2B X -X 1 -X 3 -X,-Xl 3 -Xl 4 -X3 4 - X3
A xi-x -x x -x -x -x -I)4

3B 3  1- 2- 4 '12- 14- 24-"2

ABx 4 1 -x I-x 2-x 3-x 1- x 1- x23 13

(DUx x +X+x- 1-x -x -x
QU 12 '1 '22 3 '4 34

Q u C x 1 3  x 1 +X3 +X13  1-X2) 4-x21

(DuOD x14  ' 1 'X4 'X14 1-x 2-x 3-IK2

(2)UG X113  x 2 +X 3 +X '13 ~'1-1 4 x 14

0 UO x 24 x 2+ +X i-x 3 -x1

U @x 34*3 +*4 +X34 -1 l x2

' j()x123 '1 I'X2 +'3 +'12 +'13 "X23 'X123 I 4

(xj0 x 12 '4 x +x)+ 4 +x +x 14+X ) +X 12 1-x 3
Q j x'124 ' 1 '2 3'X4 +'12 +'14 +4 24+I 3-

()UG'34 '2+ '3 'X4 '2,73 '2-4+ '34 + 2 3 4 '-X1

X, = 1-:X.



Table II

A: white B: magnetic

Mass Frequency
AB X 0.2 10.2,0.4]

AB X2  0.2 [0.2,0.41

x 30.i [0.l,0.2'

XI3 0.2 [0.2,0.51

i2 0.1 LO. 4 ,0.7'

X13 0.0 [0.2,0.51
X24 0.1 [0.4,0.7 ]

' 23 0.0 [0.3,0.5'
x2  0.3. p0.4,0.7?

x34 0.0 r0.3,0.5

x1 2 3  G.0 [0.6,0.81

X124 0.0 [0.8,0.91

X134 0.0 [0.6,0.31

X234 0.0 [0.6,0.31

9 0.0



1. This approach is similar to that of Smith (1961). It is also similar

to the approach of Levi (1974, 1981) Good (1962), and Kyburg (1974), but

as Levi points out in (1981) there are important differences. Levi

represents a credal state by a closed convex set of conditional probability

functions. Since distinct closed convex sets of conditional probability

functions give rise to the same closed convex sets of simple probability

functions (probabilities conditional on tautological evidence), the two

representations are not equivalent. Smith and Kyburg represent a credal

state by the convex closure of all probabilities consistent with a set of

probability intervals. Shafer, as will be seen, implicitly offers the

same characterization. Dempster (1968) offers a more restricted character-

ization: the convex set representing the credal state is the largest that

both satisfies the interval constraints, and can be obtained from a space

of "simple joint propositions" in a certain way. Levi has shown (1931,

pp. 338-392) that these additional restrictions are incompatible with

certain natliral forms of direct inference of prolbabilities from know.

statistics.

2. In another place I shall argue that we can found all our probabilities

on direct or indirect statistical inference, or on set-theoretical traths.

No other source is needed.

3. An exa..ple suggested in conversation b-- Teddy Seidenfeld is this:

consider a oon;ound experiment consist in; cf either tossing a fair coin

twice, ,or drawing a cin fr2n a baa a-.1 . double headeJ and

6C'" do, le tailed coins. The two parts c the compound are perfcrnel in

an urKnovn ratio. Let A. be the -en t-.a -e first toss lands heals and

B the event that the second toss -ands h-a's. The representati'n a



convex set of probability functions is straight-forward, but

P,(A B) = 0.75 < 0.9 = P,(A) + P,(B) - P,(A B) = 0.4 + 0.5 - 0.0

By theorem 2.1 of Shafer 1976, P* is therefore not a belief function.

It is possible to compute a mass function, but the masses assigned to the

union of any three atoms must be negative.

4. This result was stated informally by Levi (1967).

5. Dempster (1967, 1968) was well aware that his rule of combination

led to results stronger than those that would be given by a mere

generalization of Bayesian inference. His reasons for preferring the

rule at which he arrives are essentially philosophical: in a classical

Bayesian framework, unless you restrict the family of priors, you don't

get useful results starting with 0 information. E.ut in expert systems,

we have no desire or need to start with zero information.

6. Quinlan's (1982) subtitle suggests the opposite: A cautious

approach to uncertain inference."

7. It is not clear that Shafer's belief functions were intended to be

used in a decision-theoretic context. Even if they were, there would

be serious difficulties standing in the way of such employment. (See

Levi (1978, 1930, 1983), and Seidenfeld (1973)). For present purposes,

these difficulties need not :oncern us.

S. This corresponds to Lev i's notion ( L ) Dff E-a :nissibility.

3 1



9. This elegant and simple example was proposed by Jerry Feldman.
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